Airports Use Dwyer Building Automation System Products

Tapping your foot anxiously, you glance at your airline ticket and the terminal noted on it. The flight will be boarding in a few minutes. As you look around, there are several other people waiting for this flight; it seems the plane is fully booked. You close your eyes and breathe in deeply, calming your nerves. The air seems fresh, not stagnant, despite the large number of people around you. There are no empty seats in the area, so you carefully find a window to lean against as you watch the airplanes of other terminals and wait for your own.

Airports must provide a controlled environment for their visitors, while allowing scheduled maintenance within a building that is operational 24/7. Additionally, they must offer a high level of security for their passengers, all while simultaneously moving those travelers and their luggage rapidly through the building, in a finite amount of time.

Generally, airports are large complex buildings divided into numerous areas, with a number of smaller units located within them. Building automation systems (BAS) are used within airports to monitor and control sensors for things like filters, temperature, air flow, and building energy usage.

Airport automation, put simply, is needed to help ensure safety for world travelers and efficiency for those who make it possible. When an airport’s BAS is functioning properly, travelers can focus on the tasks at hand while everything runs in the background to keep them safe. Continue reading “Airports Use Dwyer Building Automation System Products”

Non-Dispersive Infrared (NDIR) Carbon Dioxide Sensors

Non-Dispersive Infrared, NDIR, CO2 Sensors

Dwyer offers several carbon dioxide measuring products that use non-dispersive infrared sensors as the sensing element. Carbon dioxide sensors are commonly used in building automation systems to monitor air quality.  The level of carbon dioxide is indirectly proportional to the amount of people in a space and can be used to adjust ventilation for the space.

There are two basic types of gas sensing technologies: chemical reaction and infrared spectroscopic. Most chemical reaction sensors are electrochemical sensors, which are not as reliable as they can interact with multiple gases and wear from interaction with the gas. Continue reading “Non-Dispersive Infrared (NDIR) Carbon Dioxide Sensors”

What is Sick Building Syndrome and How Can You Prevent It?

Many people think that we get cold and flu viruses more often in the winter due to the cold temperatures outside; however, this can actually be attributed to the fact that we are inside more, thus being exposed to higher concentrations of pollutants. Poor indoor air quality can cause what has come to be known as sick building syndrome.

Continue reading “What is Sick Building Syndrome and How Can You Prevent It?”

How Barometric Pressure Affects Carbon Dioxide Readings

As standards become stricter for monitoring indoor air quality (IAQ) it is important to understand that the readings from your instrumentation are correct and accurate. When monitoring carbon dioxide levels for on-demand ventilation, it is imperative that you account for barometric pressure as it can create a false sense of accuracy when controlling an HVAC system. Continue reading “How Barometric Pressure Affects Carbon Dioxide Readings”